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1. Introduction

The Fermilab Lattice and MILC collaboration’s program umis calculations of the hadronic
matrix elements for weak and B meson decays, in particular, the decay constépisfp,, fg,
and fg, and the semileptonic form factors f& — m¢v, D — n(K)¢v, andB — D*/v. In this
work we present a perturbative matching calculation of #levant current renormalizations to
one-loop order. The numerical simulations for the abovesyasyanalyses use MILC ensembles
with improved glue and 2 1 Asqtad staggered sea quarKs [1]. The light valence quaekalso
generated from Asqtad staggered quarks and convertedute gaarks. The heavy (charm and
beauty) quarks are treated with the Fermilab action. See[Rjefor more details on the actions
and parameters used in the numerical simulations.

2. Definitions

In this work we follow the analysis of Ref|[3], where the diep corrections to heavy-light
and heavy-heavy current renormalizations were calcultdedrermilab heavy and Clover light
guarks with Wilson glue.

The heavy-light currents have the form

I =y, (2.1)

wherel;, =y, or y, ¥ andy) denotes a naive Asqtad Dirac spinor. The Fermilab Diracospiph,
is rotated by

Yn=y[l+ady D], (2.2)

with the tree-level coefficient 1 1

T 2+mea 2(1+moa)
The heavy-heavy currents have the form

d (2.3)

I =y (2.4)

where now both spinors are rotated Dirac spinors. Since ¢agyhquarks are rotated, the lattice
currents of Eqns[(3.1) anfl (P.4) include the leading onde-fevel discretization corrections.
The current renormalization is defined as

1/2 1/2
?I _ (Zéh/ )/\Jrzél/ ))cont
RN

(2.5)

where/\ ;. are the vertex corrections adgh (Zz) are the heavy (light) quark wave function renor-
malizations.

We factor out the dominant mass dependence due to the trelealave function renormaliza-
tion of the heavy Fermilab quark by defining the perturbagi¥pansion as

e*m[lo]a/zzﬁ‘: =1+ g(z)zg‘r' Iy (2.6)
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where the heavy quark masses are defined as usual,
Ja=log(1+mea), moa=1/(2kn) —1/(2Keri) - (2.7)

my
SinceZy, for degenerate masses is easy to calculate nonpertutigative useful to define

Zhl
pi= X —11gdp+.... (2.8)

~ [7hhll
VZARAA
In this case, the dominant mass dependence cancels byuatiisir
Analogously, for heavy-heavy currents we have:

1/2 1/2
b (Zgh/ ) Ay Zéh// ))cont

zZy" = . (2.9)
N
Taking the leading mass dependence out again, the pertgriexpansion is defined as
o (Mimi)a/2Zh g g2y (2.10)
Finally, thep factors for heavy-heavy currents are defined as
P L (2.11)
¥ = —— = 9P e :
4" Vg

3. Procedure

In this work we use the automated perturbation theory tegles developed by Lischer and
Weisz [4] to generate the Feynman rules for the lattice asti@Ve then integrate the loop diagrams
by “brute-force” using VEGASI]5]. The advantage of usingaamated perturbation theory is that
it is relatively easy to switch actionf [6]. Indeed, we hagsulits for the current renormalizations
for two gluon actions, two light quark actions and the heawsir§y action.

The one-loop diagrams for the vertex corrections (inclgdire rotations) are given in Ref] [3].
We have performed the following tests of our calculation:

e For the automated perturbation theory code, we have companevertices and propagators
against known results.

e We have written two independent programs for calculating ¢hrrent renormalizations
based on the automated perturbation theory code.

e We have a third independent calculation of the current maatizations using traditional
semi-analytic methods.

e Our results for the heavy-heavy currents agree with thodebf [3] when we switch from
the improved gluon propagator to the Wilson gluon propagdie also reproduce the results
of Ref. [3] for heavy-light currents with Clover light quariand Wilson glue.

e Our result for the Asqtad naive wave function renormalaatagrees with Ref[][7], and our
result for the naive-naive vertex correction with Wilsonglagrees with Ref[][8].
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4. Results

Figure 1: Zcr[l] for equal masses as afunctionrr{f].

Figures 1—4 illustrate our results for tles, p’s, andqg*'s as functions of the heavy-quark
massm[lo]a. Theq*’s are calculated from the log moments using Eqn. (13) of [Rif.

Our results for the heavy-heavy currents are very similahose of Ref. [[3], since they differ
only in the gluon propagator. The main features of the magsmtience are the same. Figures 1-2
show results for the degenerate megsurrent. We also have results for the other currevitsAy,

A)) as well as results for currents with unequal masses. In #eskass limit we find
hh[1]
2y, (

in good agreement with Ref._JI10]. This is another test of @lcuation.
Figure 3 shows a comparison of the current renormalizatitiheoheavy-naivé\, current with

the corresponding factor, and Figure 4 shomg,hl[l] and p\'}i' el First, the general features of the
hi [1]

heavy-quark mass dependence are similar to the resultsfo[E]&eSecond,pA4

smaller thanZRL[l] over the relevant mass range. Hence, the cancellation betihe numerator

and denominator of Eq[. (2.8) already observed in REf. [3] &lkes place for heavy-naive currents.

m = 0) = —0.10056(3) , 4.1)

is significantly
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Figure 2: g*a for Zv Ytor equal masses as afunctlonrr{f

In the massless limit we find:
oy U (m? = 0) = ~3.038(2)- 1073 (4.2)
oy U (m? =0) = ~3.05(5)-10°
We also have results for the naiVg current renormalization. In the massless limit we find
zyM (mo = 0) = —0.10457(4). (4.3)

We have studied the mass dependencé\,& by varyingmy between zero and the strange quark

mass. We find thaZv is essentially independent ob.

In summary, we have calculated the current renormalizatielevant for the numerical analy-
ses of heavy-light decay constants and semileptonic foctoifa performed by the Fermilab Lattice
and MILC collaborations. We calculate the full mass depandef theZ's andp’s. The one-loop
corrections to thep factors are small. They vary roughly betweed% and 4%, depending on
lattice spacing.
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